GGHLite: More Efficient Multilinear Maps from Ideal Lattices
نویسندگان
چکیده
The GGH Graded Encoding Scheme [10], based on ideal lattices, is the first plausible approximation to a cryptographic multilinear map. Unfortunately, using the security analysis in [10], the scheme requires very large parameters to provide security for its underlying “encoding re-randomization” process. Our main contributions are to formalize, simplify and improve the efficiency and the security analysis of the re-randomization process in the GGH construction. This results in a new construction that we call GGHLite. In particular, we first lower the size of a standard deviation parameter of the re-randomization process of [10] from exponential to polynomial in the security parameter. This first improvement is obtained via a finer security analysis of the “drowning” step of re-randomization, in which we apply the Rényi divergence instead of the conventional statistical distance as a measure of distance between distributions. Our second improvement is to reduce the number of randomizers needed from Ω(n logn) to 2, where n is the dimension of the underlying ideal lattices. These two contributions allow us to decrease the bit size of the public parameters from O(λ5 log λ) for the GGH scheme to O(λ log2 λ) in GGHLite, with respect to the security parameter λ (for a constant multilinearity parameter κ).
منابع مشابه
Implementing Candidate Graded Encoding Schemes from Ideal Lattices
Multilinear maps have become popular tools for designing cryptographic schemes since a first approximate realisation candidate was proposed by Garg, Gentry and Halevi (GGH). This construction was later improved by Langlois, Stehlé and Steinfeld who proposed GGHLite which offers smaller parameter sizes. In this work, we provide the first implementation of such approximate multilinear maps based ...
متن کاملNew multilinear maps from ideal lattices
Recently, Hu and Jia presented an efficient attack on the GGH map. They show that the MPKE and WE based on GGH with public tools of encoding are not secure. Currently, an open problem is to fix GGH with functionality-preserving. We present a new construction of multilinear map using ideal lattices, which maintains functionality of GGH with public tools of encoding, such as applications of GGH-b...
متن کاملMultilinear Maps Using Ideal Lattices without Encodings of Zero
Garg, Gentry and Halevi (GGH) described the first candidate multilinear maps using ideal lattices. However, Hu and Jia recently presented an efficient attack for two applications based on the GGH map, multipartite Diffie-Hellman key exchange and an instance of witness encryption using 3-exact cover problem. In this paper, we describe a modification construction of multilinear maps from ideal la...
متن کاملIdeal Multilinear Maps based on Ideal Lattices
Cryptographic multilinear maps have many applications, such as multipartite key exchange and software obfuscation. However, the encodings of three current constructions are “noisy” and their multilinearity levels are fixed and bounded in advance. In this paper, we describe a candidate construction of ideal multilinear maps by using ideal lattices, which supports arbitrary multilinearity levels....
متن کاملIdeal Multilinear Maps Based on Ideal Lattices
Cryptographic multilinear maps have many applications, such as multipartite key exchange and software obfuscation. However, the encodings of three current constructions are “noisy” and their multilinearity levels are fixed and bounded in advance. In this paper, we describe a candidate construction of ideal multilinear maps by using ideal lattices, which supports arbitrary multilinearity levels....
متن کامل